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Final Technical Report: AFOSR-87-0255

Technical Objectives

This grant has as its goal the development of a theory of vortex breakdown capable of

identifying the physical mechanisms responsible for the phenomenon, and upon which

may be built practical methods of prediction and control of the phenomenon and its

contribution to the forces and moments on aircraft and missiles. The two-year grant

concluding May 31, 1989 initiated a systematic approach towards this ultimate goal in a

multi-part program with more limited objectives.

The first part, Task A, sought the construction of fully nonlinear

axisymmetric solitary waves in vortices. This objective was identified in the 00

expectation that the strong deceleration characteristic of vortex breakdown

can be associated with large amplitude axisymmetric waves. This

association provides a clear mechanism for the dominant features of vortex W

breakdown, and, since such waves were expected to be amenable to a

relatively simple and compact mathematical representation, this provided the

prospect of a kernel for rapid algorithms suitable for design or control

purposes.

* The second part, Task B, sought ways to characterize the stability of the

fully nonlinear solitary waves found in Task A to three-dimensional

perturbations. It has been suggested (and laboratory experiments support

the suggestion) that these large amplitude axisymmtric waves become

unstable when they grow to some critical amplitude, and that this instability
provides the mechanism to fix the equilibrium position and strength of a

vortex breakdown structure.

" The third part, Task C, constituted a study of the linear stability of a

mathematical model (due to Hall and Stewartson) of the leading edge

vortex. The model leading edge vortex is explicitly known, and the

objective of this part is to develop a simplified way to describe important

instability mechanisms. The hope is that, once Task B is completed, simple

descriptions, related to Task C, can be fitted to the instabilities of the large

solitary waves that we expect to find. Simplification is expected to be
important in designing rapid algorithms for design or control purposes.

-2-
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Because the general level of scientific understanding of nonlinear transitions

in vortex flows having a component of velocity parallel to the vortex axis,

as is the case in aerodynamic vortices, is virtually nonexistent, we

undertook an additional study (Task D) on transitions in rotating Poiseuille

flow. This flow, an exact solution of the Navier-Stokes equations,

provides a convenient example to discover some of the important nonlinear

dynamical features of vortices.

Other aspects governing the physics of vortex breakdown are of key importance, but were
outside the scope of this two-year grant.

Status of the Research

Task A has been completed. Preliminary reports were given in [1] and [2], and a paper
reporting the full details has been submitted for publication [3]. The manuscript for [3] is

enclosed and is made part of this report by reference. The principal findings are that fully
nonlinear solitary waves do exist, and that their properties are approximately captured by a
remarkably simple ansatz. The paper also discusses large amplitude periodic wave trains,
nonlinear deformations of vortex flows, and the interrelationships between these various
classes of vortex flows. A more limited mathematical method also has been applied to this

problem. A draft paper on this work exists ([4]): completion of this paper was
consciously delayed partly because numerical work (since done) was thought desirable to
make the findings of [4] more concrete, but more importantly because the work [3] was
given a higher priority. We plan to finish and submit [41 for publication.

Task B is in progress. The mathematical problem to be solved here is a linear eigenvalue

problem for a set of partial differential equations in three space dimensions. The problem is
not separable, so the standard normal mode analysis technique of hydrodynamic stability

theory does not apply. Because the numerical problem to be solved is extremely large, an , n For
attack on the problem capable of resolving the physically important scales required the A &

development of new numerical techniques to solve large algebraic eigenvalue problems.

The lack of efficient methods to accomplish this has been a stumbling block in the past. .- (
Under Task B, such methods have been developed, and a report on the algorithms
developed is given in [5], which is also enclosed and incorporated in this report by ationf

- i ty Code3
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reference. Results using these numerical techniques on the stability problem were not

available by the termination of the reporting period.

Task C is partially completed. Our work on the Hall-Stewartson model of the leading edge

vortex has addressed the large Reynolds number limit, for which we have detailed the

existence of unstable modes. This work was first reported in [6]. A draft of a paper [71
with a full description has been prepared. We have not yet found the critical Reynolds

number for the onset of instability, since this requires a more extensive numerical effort.

Task D is partially completed. One paper describing mathematical aspects of the rotating

Poiseuille (pipe) flow exists in draft form ([8]) and will soon be submitted for publication.

Other work, detailing the nature of transitions and mode interactions has been done and has

been briefly reported ([9]). The latter work traces a series of transitions in rotating pipe

flows to chaotic states, and a paper will be written to report that investigation. We also

have started, but not yet completed, work on three wave resonant interactions in rotating

pipe flows.

Publications, Papers in review, Papers in Preparation

[ 1] S. Leibovich, Fully nonlinear structures, wavetrains, and solitary waves vortex
filaments. In Nonlinear Wave Interactions in Fluids, ed. by R.W. Miksad, T.R. Akylas,
& T. Herbert, AMD-Vol.87, Amer. Soc. Mech. Eng., 1987, pp.6 7 -7 0 .

[2] A. Kribus & S. Leibovich, Fully nonlinear waves on vortices, Bull. Amer. Phys. Soc.,
(Abstract Only.)

[3] S. Leibovich & A. Kribus, Large amplitude wavetrains and solitary waves in vortices.
Submitted to J.Fluid Mech..

[4] S. Leibovich & A. Kribus, Monotone solutions for flows branching from columnar
vortices. In preparation. Likely journal, Acta Mechanica.

[6] Z. Yang, S. N. Brown, & S. Leibovich, "Linear Instability c- - Hall - Stewartson
Model of Leading Edge Vortex", Bull. Amer. Phys. Soc., (Abstract Only.)

[7] S.N. Brown, Z. Yang & S. Leibovich, On the linear instability of the Hall-Stewartson
model of the leading edge vortex. In preparation. Likely journal, J. Fluid Mechanics.

[81 A. Mahalov, E.S. Titi & S. Leibovich, On invariant helical subspaces of the Navier-
Stokes equations. In preparation. Likely journal, Archives for Rational Mechanics &
Analysis.
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[9] A. Mahalov & S. Leibovich, Nonlinear mode competition leading to chaos in rotating
Hagen-Poiseuille flow. Planned paper. Likely journal, J. Fluid Mechanics.

Participating Professionals

Sidney Leibovich, Samuel B. Eckert Professor of Mechanical and Aerospace
Engineering, Cornell University.

Susan N. Brown, Professor of Mathematics, University College, University of
London.

Mr. Abraham Kribus, Ph.D. candidate, Cornell University.

Mr. Yang Zhigang, Ph.D. candidate, Cornell University.
Mr. Alexander Mahalov, Ph.D. candidate, Cornell University.

Interactions

Technical Meetings

American Physical Society Division of Fluid Mechanics, Eugene, OR, November 23,
1987, "Fully nonlinear structures, waverains and solitary waves in inviscid vortices" (A.
Kribus, A. Szeri, & S. Leibovich)

American Society of Mechanical Engineers, Winter Annual Meeting, Boston, December
13-18, 1987. "Fully nonlinear structures, wavetrains, and solitary waves in vortex
filaments". S. Leibovich. Invited Paper.

American Physical Society Division of Fluid Mechanics, Buffalo, NY, November 20,
1988. "Linear Instability of the Hall - Stewartson Model of Leading Edge Vortex".
(Z.Yang,S. N.Brown, & S. Leibovich)

American Physical Society Division of Fluid Mechanics, Buffalo, NY, November 20,
1988. "Amplitude Expansion for Viscous Rotating Pipe Flow Near a Degenerate
Bifurcation Point ( A. Mahalov & S. Leibovich)

American Physical Society Division of Fluid Mechanics, Buffalo, NY, November 22,
1988. "Fully Nonlinear Waves on Vortices" (A. Kribus & S. Leibovich)

Seminars

"Static bifurcations of vortex flows", Department of Mechanical Engineering, Yale
University, September 30, 1987. (S. Leibovich. Invited)

"Fully nonlinear wavetrains and solitary waves in inviscid vortices", NASA Ames
Research Center, November 16, 1987. (S. Leibovich. Invited)

"Static bifurcations from columnar vortices", Department of Theoretical and Applied
Mechanics, Cornell, Dec. 2, 1987. (S. Leibovich. Invited)
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"Vortices, nonlinear waves, and vortex breakdown" , Arizona State University Department
of Mechanical & Aerospace Engineering, March 24, 1988. (S. Leibovich. Invited)

"The Phenomenon of Vortex Breakdown", University of Minnesota Department of
Aerospace Engineering and Mechanics, November 4, 1988. (S. Leibovich. Invited)

"The Vortex Breakdown Process", George W. Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, November 11, 1988. (S. Leibovich.
Invited)

"Static Bifurcations of Vortices, and a Peek Beyond", Center for Fluid Dynamics,
Turbulence, and Computation, Brown University, April 4, 1989. (S. Leibovich. Invited)
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LARGE AMPLITUDE WAVETRAINS
AND SOLITARY WAVES IN VORTICES

by
S. Leibovich & A. Kribus

Siblev School of Mechanical & Aerospace Engineening
Upson Hall, Comell University
Ithaca, New York 14853-7501

Submitted to the Journal of Fluid Mechanics

Abstract

Large-amplitude axisvmmetric waves on columnar vortices, thought to be related to flow
structures observed in vortex breakdown, are found as static bifurcations of the Bragg-
Hawthorne equation, equivalent to the steady, axisymmetric, Euler equations. Non-trivial
solution branches bifurcate as the swirl ratio (the iatio of azimuthal to axial velocity)
changes, and are followed into strongly nonlinear regimes using a numerical continuation
method. Four types of solutions are found: multiple columnar solutions, corresponding to
Benjamin's "conjugate flows", with subcritical-supercritical pairing of wave characteristics:
solitary waves, extending previously known weakly nonlinear solutions to amplitudes large
enough to produce flow reversals similar to the breakdown transition: periodic wavetrains:
and solitary waves superimposed on the conjugate flow that emerge from the periodic
wavetrain as the wavelength or amplitude becomes sufficiently large. Weakly nonlinear
soiiton solutions are found to be accurate even when the perturbations they cause are fairly
, rong.



1. Introduction

This paper is concernea ith axiailv svmmemc stanoing wavetrains and soiitanv
waves, without restriction to infinitesimai or weakly noniinear ampiitudes. iri inviscid
incompressible vortex flows. Although the paper may be rezarcied stricdv as a
contribution to understandinc of waves which may propagate on vortex cores. our
motivation is the expioration of a conceptual picture or vortex breakdown given by
Leibovich (1983) (and in a more widely accessible review in 1984, we shall designate
either of these references as L).

In aerodynamic contexts. the global flowfield causes impressed forcing on
concentrated vortices embedded in it. Generally, the spatial scales of the forcing are large
compared to scales associated with the vortex core. A conceptual model of vortex
breakdown is promulgated in L, guided in part by laboratory experiments and in part by
the weakly nonlinear "trapped wave" theory of Randall and Leibovich (1973: or RU). In
the scenario outlined in L. vortex breakdown is a process that involves a crucial admixture
of a strongly nonlinear axisvmmetric wave propagating in a vortex "waveguide" having
axially varyi ng characteristics (and hence an axial pressure gradient). and a smaller
asymmetric perturbation arising from instability of the big wave. The pressure gradient
impressed bv the waveguide does work on the axially symmetric wave, causing it to gow
to large amplitude. The weakly nonlinear trapped wave theory of RL indicates that wave
growth of this sort leads to a positional instability of the wave, as it grows, it propagates
faster, and an equilibrium position cannot be established (with respect to a reference frame
fixed bv the waveguide) unless there is a mechanism for extraction of energy from the
axisymmetric wave. RL invoked viscosity as a mechanism to dissipate wave energy. On
the other hand. laboratory experiments (such as those done by Sarpkaya, 1972 and by
Faler and Leibovich. 1977, 1978) show clear evidence of nonaxisymmetric features within
a nearly axisymmetric "bubble" form of vortex breakdown, and the onset of asymmctry is
consistent with an instability of the axially symmetric flow. If the 'bubble" were regarded
as a manifestation of a large amDiitude, nearly axisymmetric. wave, then instability to
asymmetric perturbations offers the possibility of much larger energy transfers from the
wave than would viscous dissipation. Furthermore. the teatures of vortex breakdown
appear to depend little on viscosity, at least at higher values of the Reynolds number.
Consequently, it is suggested in L that the required energy extraction from the strongly
nonlinear axially symmetric wave arises bv the transfer of its energy to azimuthallv
asymmetric modes of mouon which arise by instability. (It is pointed out in L that a large
amplitude axially symmetric mode - large amplitude implying a variation occuning on axial
scales comparable to the vortex core radius - is required in vortex breakdown, since only
this component of a Fourier decomposition in the azimuth can lead to the decelerauon of
fluid on the vortex axis that is the hallmark of vortex breakdown.) On the basis of their
experimental obsen 'ations in flows ver' different from those already cited. Maxworthv,
Mory, and Hopfinger 11983) also suggest, in a paper published in the same 1983 volume
as the paper by Leibovich. that breakdown is associated with loss of stability of large
axially symmetric waves to nonaxisvmmemric nerturbations.



To expiore mis suggested process, we have divided it into eiements which at a later
time must be recombined. Thie first eiement is the larue amniitude axialv svnmemc wave.
and the the aim of this paper is to deveiop a better understanding of these waves. The other
ingredients of the hypothesis, not vet considered, are loss of stability to asvmmemc
nerturbations. and effects engendered by aial inhornogeneitv caused bv the global
1lowfleld.

In axially symmetric stead, flow. it is well known that the Euler equations for
inviscid swirling flow may be reduced to a single elliptic partial differential equation for the
strearrfIunction. This equation seems to have been first discovered by Bragg and
Hawthorne (1950), and in this paper we will refer to it by their names. Following
Leibovich, 1985, we parameterize the Bragg-Hawthome equation (BHE) by the relative
level of the swirl, and construct standing waves, either infinite wavetrains or solitary
waves, bv studying the branching behaviors which arise as the parameter is varied (other,
nonwavv flows. were discussed by Leibovich. 1985, from this starting point, and a few of
the results to be detailed here for weakly nonlinear wavy flows were announced in
Leibovich. 1987). The procedure can therefore be described as a search for static
bifurcations of the BHE. Another natural parameterization that might have been chosen as
a starting point for a bifurcation analysis is the wave speed of waves of permanent form.
Here one adds a constant parameter to the primary axial velocity profile. given in a specific
frame of reference. and regards the swirl as fixed. This choice, although more useful for
some purposes than the parameterization using swirl level. introduces the wave speed
parameter into the problem in an awkwardly nonlinear way, and we have not made use of it
in this work.

Branching, when it occurs, is from a primary columnar vortex, assumed to be
given. The flows which bifurcate from this vortex are required to have the same volume
flow rate. and the same total head and circulation variation with strearnfunction as does the
2iven vortex. With these constraints and the assumption that the flow is either periodic in
the axial direction with a finite waveienmtn L or is columnar at upstream and downstream
infinity. we find that new tlow branches mav be of four kinds. One class (I. discussed in
§4) of bifurcating flows is again coiumnar. so there are no axial varations: a second class
Il1. §6) consists of solitary waves with the primary flow at upstream infinity: periodic
wavetrains comprise the third class iI. §5): and a fourth class (IV. §5) consists of solitary
waves that approach a columnar flow at large axial distances that is distinct from the
primary columnar flow.

The columnar branches. of which there is an infinite number. when taken together
with the primary flow. are the "conjugate" flows defined and discussed in Benjamin s
(1962) seminal paper. Two of these are especially important and receive emphasis in
Benjamin's work: these are the primar. flow. and what we shall call the pnncipal conlugate
flow. which is the columnar flow branching at the pnncipal. or lowest. cigenvalue of the
linearized problem. and therefore differin , from the primary flow bv an azimuthal vorticity
,hat does not change sign. The procedure adopted here allows one to determine how these
tlows are connected tocether. We are also able to show that. at a colunmar-coiurunar
.1ifurcanon point between the nrmamr- flow and its principal conjugate. there is a transfer or



Benilamin s 11962) criticaiity ciassification of the tiows. I-hat is. it one flow is supercriticai
on one side of the bifurcauon point does not admit upst-eam propagating waves of
infinitesimal amplitude, and shorter standing waves). then tne other coiumnar Drancn is
,ubcriticai (admits upstream propagating waves). and that these properties of the branches
ire exchanged as the bifurcation point is passed. (N.B. We use some of the ianguage or
bifurcation theory., but our use of the terms supercnticai' and suocriticai is according to
Ben jarmns wave classification, and is not related to the direcuon of bifurcation.)

Fully nonlinear solutions have been determined numerically. This of course
requires that specific examples of primary vortices be considered. We have chosen one
family of examples, uniform axial velocity and the Burgers vortex. While the uniform axial
velocity of this primary vortex differs from the jet-like or wake-like character of flows in
which vortex breakdowns have been observed, the principal columnar flows which
bifurcate from our example are either jet-like or wake-like depending on swirl level, and
therefore closely resemble flows upstream or downstream. respectively, of vortex
breakdown. In addition to the ieneral results on columnar branches aireadyv mentioned.
,e note here an interesting - though academic - feature of the pnncipai columnar branch.
We have found that this branch can be numerically continued to very smail swirl leveis.
With this clue as a point of departure, we show (in §4.4) the limit of vanishing swirl by
asymptotic means, showing that continuation to zero swirl is possible.

Numerical examples of fully nonlinear wavy solutions similar to some of those
discussed in this paper have been presented by Hafez et al. (1986) (an abbreviated account
is given by Hafez and Salas, 1985). Our paper gives a considerably more comprehensive
picture of the inviscid picture by identifying classes of solutions other than periodic
wavetrains. and by uncovering the connections between them. The results of" Hafez et al.
,were computed for a different (although more or less similar) class of primary vortices, vet
their results are qualitatively similar to ours. This. and the theoretical argument of this
paper, leads us to believe that the response to variation of swirl, and the main
charactenstics of the flows to be described here. are not the conseuence of a soeciai choice
,f protiles for the numerical work. but are of general applicability.

Solitary waves of class II can be found for the supercriticai values of parameter rv
numerically continuing known weakly nonlinear solitary: waves (with our choice of nrmarv
vortex, we have access to weakly nonlinear results found by Leibovich. 1970. which ve
use as a starting point) to large amplitude. These solitary wave flowfields approach the
primary columnar flow asymptotically at large upstream and downstream distances. Their
.tmpiitudes can be increased to values sufficiently large to cause stagnation points to appear.
tollowed by encapsulated regions of closed streamines. The utilitv of the results when
tiow reversals are present requires careful consideration, particularly since added
nonuniqueness enrters in such circumstances, and the consistency requirement or the
Prandtl-Batchelor criterion is violated. We believe that the results wilil prove to Le of value
ait these large amplitudes, and discuss the reasons for this belief in the finai section t§7").
\n interesting and potentially tiseful point is that even at amplitudes large enoucii to cause
,tasnanon and reversed flow, the weakly nonlinear soiitary wave solutions remains an
_,ood approximation to the results of the fully nonlinear calculations.



For superiticai Parameter values. periodic wavetrains (class ill') have ocen founci by
:iumericai continuation .beginning with infinitesimal waves. As thle arniitudes of the
periodic wvaveti-ains increase at fixec[ waveienhztri in the numerical exampies (as they do
.nen Lm e parameter measurngz swiri increases). the w.%ave troughs become highly locanzed.

..nd the wave crests become very broad. T1hese oroad crests have vituailv noc axial
artation. that is. they' arearly coiumnar. We show inat itiese neariv columnar flow

.Aioseiv approximate. at large wave amplitude, the columnar principal conju cate vortex.
Thie same kind of behavior is found to hold when the swirl level is held fixed. but the
wxaveiencth of a wavetrain is increased. In either case. an individual wave ti-ough
approaches a solitary wave with the principal conjugate coiumnar vortex being the flow at
'large -distances upstream and downstream. Thus. we are led to another family of solitary
wvaves (class IV) distinct from those supported by the primarv vortex, but clearly connected
to0 it.

2. P~roblem formulation
'The Euler eu 'uations in cviindicai coordinates (r.H.z) for steady, incompressible.

axiailv-svmnmeuic flow may be reduced to a i~ngie elliptic partial differential equation for
,he Stokes streamfunctnon. v. related to the radial (u) and axial ox by

U = - r I .z w = r Ytr -

The equation, which connects the azimuthal vorucity to the total head and circulation.
seems to have been first found by Bragg and Hawthorne (1950) and is civen by

D ri-1'(vi) - FF(v) 'BI-F,

.here

D-v ifrr -1'/nr) 1t- '-fz

-r -he azimuthal ~ompoonent of vorticimv. A\ number of other authors have made use ot
:hIis euuation notably Lont-, 105',. Frankel (1956). Squire (195,6. and Beniatnin 1962).
See B~atchelor ( 1967) for a convenient reference for a derivation of BHE. followinLc Bra,---
,,nd flawthorne. or YIh ( 1065) for a derivation by an alternate method. The rerlacement or
:ne Euler equations ny BI3HE is 'ustitiable at ail points in a steady. inviscid and axiaily
-VmmnMC~ flow wkith thle vossible exception of merioionai stau-nation points tiie., '.% nere u -

w .but V. thle azimutnal velocity component. may he nonzero), which are sine(-uiar
points of the transformation. fin B11E. I h NJ . the total head or iBernouiii function



,ind F(y), the circuiation about me symmetrv axis apart Irom a factor oi 2,.

F(w) = r'vr.z) K2)

are functions of wj alone. That F is a tuncion of v alone is a consequence of conservanon
of anguiar momentum in an inviscid fluid.

Solutions to (BHE) are solutions to the Euler equations unoer the stated
restrictions, and different inviscid flow problems arise from the specifications of the pair or
functions H and F. The simnplest cases are those for which the radial component of veiocitv
vanishes at some plane z = z1 on which the axial (w) and azimuthal o, ) velocity

components are specified to he W(r), V(r) with X : t 0. then H'(i and F are easily
,etermined see Benjamin. i962). In this case. which we consider here.

I1

P or r

,a this plane. Since
r !4)

yJ(rz,) (rW(r) dr ='V(r)
1 0

we can suppose this latter relauon to be inverted to give

r = Ro~j),5

This inversion can aiwavs be done tin principle) it W(r) A-)...\t z =.. , e can now

reg.-ard W as a function of v. since

W = ,r.z) - dX R(v))r Ur R(w) dR

With \(r) prescribed. Fovj is determined to be

: -:(,,( = R(xmi) VRNd).

lhe pressure may now he found as a function ot xiJ from 3 i inteC-ation.



-- V-r

-P =-- dr.z. I - r
0 0 (0

And thus H(w) may be identified. If the rauial ,velocitv is not L'lven to be zero at z=z I but is

prescribed as some nontrivial function of r, a similar construction of H(W), F(V) can be

,arried out. We cail the flow given at the piane z=z1 the "specifVing flow. this will be

taken to be the basic. or primary, flow and the starting point of our investigations.

Only H'(v) is required for the analysis. H(W) itself is not needed. At a plane z-z

where u = 0, v =V, w = W, and

dH )H dR 1 dF I dW
- Y R dR=-I F F 9

d J r d, R- iv R dR

Now we suppose that, at z = z l , the functional form of the swirl V(r) is fixed. but

the level is adjustable. so that

R0= f(. (10)

where f is a fixed function, and A is an adjustable constant. Equation rBHE) fc" iy
he wntten

2~ 1 2D = I--AW) - /t'B(yg,r-  11)

hv here

I dIW 1
A(Y) =--~-drR()), and B(iv.r-) (12)R(wI/ or,

= R'(xi-r-) ff'(W)/R"p .

With the appropriate interpretation of ., we mav regard equation I )as
Jimensionless. Thus, if we scale distances bv a characteristic radius b sucn is that of a
hounding tube. or. alternatively, the location of the maximum swirl speed). the specifying
ixial velocity with a characteristic speed WO (such as its value on the axis), the

itreamfuncuon ,, mth b-Wo. the azimuthal speed with a typical value V, (sucn as tne
:.wLximlum occurine in the tlowi then

Il-



,.ni we may interpret i 1) as a dimensioniess euuauon.

The parameter . appears oniv as A-. ari so we remace it hereaiter with

and as a consequence of its definition. only admit positve values of A.
Suppose the boundaries of the fluid in the (r.z) plane have. as two constituents, the

impermeable cylinders r = a and r = i > a (here we have chosen the outer tube radius as
length scale for our problem). The columnar specifying flow

v - P(r) 14)

:s a solution of (11 ) holding for ail A > 0. We now wish to find other solutions. penodic
in z with a prescnbed wavelength L. Since both the specifving columnar flow and any
other wave-like solutions that may exist simultaneously satisfy the same mathematical
problem.and one possibility for this to occur is by bifurcation of new branches of solutions
from the specifyina flow, and the multiple solutions so obtained, when of small amplitude,
may be identified as the waves propagating on the specifying flow previously fourn;'n the
literature (cf. Long. 1953, Frankel. 1956, Squire. 1956. Benjamin, 1962). Let

• = ,' - P~r),. : 15)

represent the perturbation streamfunction. If there are other solutions, there is a z-periodic
nonm-iviai solution to the (elliptici partal differennal equation

N(',AI = + 2(Ir.,j = 0 16a)

where

L.2(D.r.) = .\ P((D.r) - r- Q($.r) 16b)

with P(1).r) - B( P - (D, r") - B(Y1. r-)

and 0(.).r) E AMP + (D) - A(Y)

,atisfvine the houndaV conditions

(Na'z ([)( 1 I ), 1 6c)

7 = Nr.z--- L) 16d



The nonlinear .proolem admits soiutions even in z. anu we locus on tflese. In
ciditdon to admitting solutions with this sinmeuY (z -- z). soiuuons are aiso actte

with z ~.z - hi. for any h. Thus. smooth z-peniodic solutions may be constructed bv
a1ppropriatelv piecing togetner Wvy reriecuons and shifts) solutions satisfying tne Neumann
)Oundlarv conditions.

r~o) ,7- ) 0.l6e)

3. Static bifurcation analysis
The Braua-Hawthorne equation describes only steadv, or'static,. solutions. It can

therefore be used to describe branches of the families of steady solutions corresp~ondingz to
the same functionai forms (as functions of the so-eamfunction 'for the total head .and

c:irculation., and the same voiume rate or flow. The bifurcation and continuation of such
branches is discussed in this section. The question of the stability of the various solution
branches of the BHE is a dynamical problem. This cannot be answered in the context of
the Bi-E equation, and it is necessary to return to the Euler equations in which solutions to
BHE are embedded. T1his is addressed (for columnar solutions onlv) in §5.

3.1. Perturbation expansion
We know that the specifyi n E flow. $D= 0. is a solution to the problem (16) for any

value of the parameter A. T1his can fail to be a unique solution branrch for a iven A only
when L(0,A), the operator defined by the linearization of N((D.A) about (D~ 0. is not

'nemble. This occurs only wvhen the parameter A coincides wvith an eicenvaiue. 4i (savi.
Or the linearized nronlem

L(0+o Q0( O1 - .rA) oI 7a)

D i- jA-0. Or) - r-1,-40,r)0 0Q i
(J(D ($

O,)(a.z) = 1 0,z) of). ' - L) = o,)(a~z +±' L). 17b')

For .A near a n eiuenvaiue a. we construct a Solution brancrinriL from mhe
'Tpecifvinu flow in a pertur .bation series. Thiis will provide a local approximation for the
'ol1ution hranchine- a, a,. % hich wke wlil continue nUmencaiy to iare-er valiues ot i.\ -i

Le.t



(D = 1)Of) E - 1 - .Sa)

S -- E)=,+ -M E -... 18b

'Ind set
i kp

pktr(r) -. r-, 19a)

r) 19b)

SOpr; 4) 4Pk(r) - r-qk(r), (19c)

where u refers to any eigenvalue of the linearized problem 17) and oo the corresponding

eigenfunction. v is a small ordering parameter measuring the ampiitude ot the bifurcating
solutions and the difference between A and its value 4. at the bifurcation point, and the dots

stand for higher order terms in c. When these relationships are substituted into (16a),
Taylor series expansions in powers of F carried out and each coefficient in the series is set

to zero, the first three coefficients are

L(0, )Qo = D2 0()+ !Jt p1 (r) - r2 qj(r)j 0o -0 (20a)

LO,i)O=- Ktp1 (r)p O - si(r:.4)Ooj (20b)

L(0. io2 = - Kptr)o, + Kp~trbO, i- K,1p2r:L.U)O,- (20e)

and all the o sausfv the same boundary conditions t 17b).

Note that

I df'

and

( I 1 dW
Cll~ -rW r 'r Lir



The numerator of ptr), when muitipiied by A. is Ravlei,,hs discriminant. anti

therefore sensible Drooiems. in the context of considerations such as in this paper. ,,viii
ihave p,(r) >0. anci we assume this to be the case. Otherwise. the primary' liow is

unstable.) Only positive values of LL can correspond to brancn points, since A > () bv

definition. If p~lr) > () and q1(r) 0. then the smallest (or 'principal") eigenvaiue is

guaranteed positive i Leibovich. 1985). and is therefore a possible branch point. Positive

values of q I r) are not necessary for this to be so. In the development below, we tacitlv

assume the smallest eigenvalue is positive. If this is not so, then the mathematical chan2es

needed are obvious - one deals oniv with the positive eigenvaiues. of which there is an

infinite number - but the branchini solutions are likely to be unstable and therefore

physically uninteresting.

The problems we have posed here depend on two parameters. A and L. once the
-pecif.ving flow is selected.

The principai eigenfunction has no zeros in the interior of D (Courant and Hilbert.
1953). and without loss of generaiity. ve therefore may take it to be nonnegative. Even
eigenfunctions are all of the form

0 = ym(rcos 2 mrz/L), (21)

where the integer index p is the number of internal zeros of Xpmr), which satisfies the

problem

d,, dym- 2m7r 2 22)
rT'ru' ) r I1,m plr - r- (r) -I ] ,pm = 0

Here we have iabeled the eicenvalues according to the indices p and m corresponding
to the associated eienfunction. The principal eigenfunction corresponds to m = 0 and to the

index p, which we can take to be p = 0, such that the function ;<(x)(r) has no zeros internal

to D. The principal eigenfunction belongs to the eigenvalue 4) and is a function otfr alone.

A solution which branches from the principal eigenvaiue therefore corresponds to a new
columnar flow 1 which we will call the 'principal coniugate branch" since it is a conjugate
:'ow as defined by Benjamin. 1962). and an infinite number of other coiumnar flows ialso
-onluuates in the sense of Beniamin branch from iaruer eiuenvaiues corresnondim to in
,.nd the eigentunctions X!,r. t'or P 2.3 Solutions periodic in z tstandin,.z %ki"WesI
!,ranch from eicenvaiues corresrpondin r to ei,-,enrunctions w ith m M . Modes for ail
'.alues of m are characterized by the number of zeros of their eicenfunctions with /,

ihaving p internal zeros.



VFhe eiteenvaiue pioblemt7 :i in standiard Srtum-Liouviile t'rm iCourant &
H-ilbert. 1953). and some of its features (such as bounocs on toe smallest el'-envaiue) are
Jiiscussed by Leibovich (1985). Trhere is one comment which is worthl ma~aig at this point
about this eizensystemn. in addition to tne observations we have aireadv made.
Eigenvalues corresponding to z-deoendent elgenfunctions (constitutingz w.kavvy modes.

with eigenvaiues exceeding7 p4() decrease as L increases (Courant & Hilbert. 1953). anai

as L i'~ ~ is an accumulation point for the wavy engenvalues an ;c (). For tne

same reason. waves correspondling, to higher radial modes have accumulation p~oints, with

4= - u~as L

3.2. Branching behavior
If 6( is an eigensolution. then the solution to the ad joint eigenvai ue problem

with an unweighted inner product is air, or alterniatively, the problem is self-ad joint

under the inner product

(F,G) =,FM~

%vnere

K*)= rY.dr dz.

and D is the spatial domain in which our problem is set.

For the problem for 01 to have a solution, the solvability condition

-lust be sautisfed. It ui = i) , the smailest eigenvalue. thien o, I., the nrimai'.

el(-enf'uncbon. which may be taken to be positive. Unless 4xP-pOr) - r-u,(ri i*s distFNtite

in a special way, then, K,) is nonzero and the bifurcation at p4x Occurs with finite sioee

i.e., it is transcritical or dA/dE # 0) at c 0).

The eizenfuncdon correspondingT to PJ4), the lowest eigenvalue for m 1.is

Accordinu to (23), K, Ofor soiutions branchine! from 4,q, :ince the defining!

uteeurais extend over one period in i 2-rid the numerator therefore vaunishes. D~e dit"IeretltI'll

.-quation deterruininu 01. from (20h t. i', now



L040 1 p= - - r-q ,tr) of) 25)

-- 3.'jpI) - r q,(r)II cos

w, ,ith solutions in the form

ol fj(r) - Clr)cos ~z (6

The direction of the bifurcation is fixed now by KI. Assuming K, # 0. A\(E) - =

K1E F- . and the bifurcation there is a pitchfork - 0 and d2A ate£ = 0). The

value of K, is determined by the soivabilitv of (20c), and the formula corresponding to (23)

'2slrtwooo 01 (~~)n)27)
Kp1 (r)O00 -

and this does not generally vanish.
The soluitions bifurcating at , are wavetrains with wavelength L in an axially

infinite region. By deveioping the series solution in e. a finite amplitude periodic wavetrain
m-ay be con structed.

When L --- -. 4) = 4(o-r 0(U2 ) and the solution of the inhomogeneous

ordinary differential euuation for f,, r) is of 0(L 2). As a conseauence. the series t ISa)
)ecomes disordered when eL' = 0 1. Thie way to deal with this nlon-uiniform behavior for
:oiz-wa~ves by the method of multiple scales (or equivalent methods) is weil-known. in
the context of the approach taken here. the expansion is centered about the columnar
bifurcation point. 4,,. The procedure, sketched in Leibovich 11987), goes as follows.
Letting Z be the slow scale. with Z =z, c. (1 = A(Z)Oor (at lowest order), then 00 (r) is the
principal eigenfunction corresponding to the eigenvalue 4x. and A satisfies the equation

- (x.'- iKqA (28a)'jz;

v,~ here K,, is defined by 18b). as before. but is no longer restricted by thle soivabilitV
2 ondition (23). and
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The analysis. aithougn by a different route. is essentially that of Benjamin 1967).
Equation (28a) has the soiitarv wave solution

A = a sech, au6 Z] =a sechzf "qacw6 z 29a1

provided act > 0 (and has no such solution otherwise). The constant a in (29) is related to
the parameters in (28a): with the level of the extreme value of A set to be a and placed at z
= 0. as has been done in (29). the amplitude a. or more precisely. Ea. is linearly related to

the swirl rate by

2cx 29bW
A = 4)o - - -x a.

3f3

In this discussion, it has been assumed that a is positive. so that waves of elevation or
depression depend on whether a is positive or negative: since we must have acx > 0. the

question devolves to the sign of cx, which is a functional of the specifying flow.
Furthermore, since 3 > 0. (29b) shows that solitary waves may exist only for A < 4oo. In
this parameter regime. no standing waves are possible (since they all branch from

cigenvalues Ueater than 4.x)), and by definition this is a supercrtical regime. Thus (29b)
makes clear that weakly nonlinear solitary waves torm only on supercriical flows. Further
discussion of the criticalitv classification is given in §5.1.

The weakly-nonlinear solitary wave solutions found by Leibovich ( 1970) from the

:ime-dependent Korteweg-deVries equation are equivalent to those given above. This

altemative form effectively derives from the alternative parameterization of the time-

independent problem hv wave speed (instead of swirl level) mentioned in the Introduction

and is
71 ,,ca\ N

() = ca O r) sech - , --" , - c, t + - ac;t ) (")

'.;here a is an arbitrary :imniitude. o,) is the eigenfunction of the lineanzed pronlem
_uvaint to 12h7". the c. are constants depending on the base flow and oo. and are

2uuivalent to (x and 03 in (28). For a given base flow, the value of ca determines the wave
..mplitude and theretore its velocity: or. alternatively, the chanze in the base flow axial
:omponent that wouid make the soiution stationary. Changing . (that is. the azimuthal
-omponent) instead will produce the same results provided the swirl ratio is the same: so



,ciectiniz an ei,-envaiue ania settina ( or A) compietelv determiunes tnis approximate
oiution.

The numerical consw-uction of solutions aionu a branch can be done by a simple
onunuation method. startng with solutions izenerated numerically by the perturbation

procedure described above.

3.3. Branch continuation
To "continue' (Kubicek & Marek. 1983. gives a izood summary' of continuaaion and

nifurcation methods) a solution (00AO) known at a given value of A =AU t' o a

rieighboin g value differing from A incrementally, we could proceed by taling ()as anU
initial guess for VA.- AMX in a suitable iterative procedure. such as Newton's method.

(DnI= On - L-l(DIIA)Mn(~,)'1

.Ising an appropriate discretization for L and N. T'his will Effive a solution if L is not
,sinuzuiar. that is. if no bifurcauon or turning point is encountered. and if 2VX is sufficiently
small. To increase the size of AA while still providing a good guess for the iteration, we
c'an proceed in the following standard way by differentiating along solution arcs ((l)(A).A):
since

-, a=0. (32a)

dD ~A* 71\ )A (DA

T-hen. at any point VPD.A). the "slope *of the solution curve

00 _o 71 NO) - 1 (.AP(1) 32b)

assuminer the linearized operator L((b.A) is invertible with inverse L- ((DA). \Ve can
.hinik of (31) as a differential equation for (D as a function of A\. We use 31) and 3Th). in

numerical algzorithm described in the appendix. in a predictor-corrector mode. We first
.nteizrate (32). usinu a Runize-lKutta method to arrive at an estimate for (1) at .\u - I
.tssumnina a solution is known at A0. and then refine this estimate using Newton iteration

31). WVe be2in each solution branch by uIsing a three-term Derturbation expansion. aiso
Jecscribed in the appendix, which is the discrete version of the anaivsis I-iven in S..This



procedure will fail if secondary nifurcation points or turning points are encountereu as a
given branch is traced, and then a more involved procedure. such as that devised by Keller
1977) (see also Kubicek & Marek. i983) will be required. \Ve did not encounter such

complications in the course of our investigations.
To do detailed calculations. ve must seiect a particular specifying flow. \Ve will

expiore the possible branches of soiutions stemming from the following simple columnar
vortex, which has been previously treated by Leibovich (1970):

W(r) = 1 33)

V(r) = -{ I - expt-otr2t)}.

This example is known as the Burgers-Rott vortex. It corresponds to the following
specifications of the functions ansinu in §2:

(r -r-. R(W) = 2\[W, f(w) = I - exp( -2cu) (34)

-, ) -1 -, 1 - exot-2o Lxna
A(W) 0: B(Wr) - -) 2ox exp( -2awxm{ - 7xp-- --

P(¢)= B( 3-r-_.r-- B( '-.rn, Q(()=)). .

3.4 Numerical Implementation .V

The problem stated in (16) is discretzed using central differences on a rectangular
mesh in the mendionai plane tr.z). Let (l), D. Q be the finite-dimensionai counterparts of
(1, D2, £. as defined in the appendix: (16) then corresponds to the mamx equation-

D (D + (!(,A) = () (35)

Equation (35) is the basis for the numerical treatment. We do not discretize steps of
the analytical procedure separately: rather. we provide an equivalent analysis for the ap-
proximate equation (35). A separate discretization of(22). for example. leads to
eigenvalues that are slightly different than the bifurcation points of (35). and this is enough
to prevent convergence to a solution branch in some cases. Even more teiling., if
eigenvectors obtained from the algebraic eicenvalue problem are used in coniunction with a
,emianalvtic cnforcement ot an orthouonaiitv condition (for example. by means ot a
numerical quadrature),. then the result will not De precisely orthogonal in the aigebraic
problem. and if the next stage of the problem is solved algebraically. errors are introduccd.
We therefore re-derive equations ( 17'- 29) in the appendix for the algebraic system 1;5).
This ensures consistency of numerical values throu.hout the anaivsis.



The strateav is the same as tnat described in §§3.2 ana 3.3. First. a soiution point
()n a non-triviai brancn is sought usina a perturoation expansion (or. for the solitary wave
nranch. the weaklv-noniinear soiution may be used). Numerical intekrranon or the discrete
anaioi of (32b) continues the branch away from the bifurcation point. and Newtons
.terauons serve as corrector steps at selected points alonuz the branch.

4. Columnar-columnar bifurcations and continuation

In this section. we discuss some general questions about bifurcations of the
specifying columnar flow to other columnar flows, and then give numerical results for the
example specified in (34).

4.1. Transfer of B-criticality condition
Benjamin ( 1962) has provided a simple test to determine whether a given columnar

vortex is subcritical or supercrtical. As Leibovich (1979) has shown, this turns out to be
,n appropriate test (for axisymme-ic disturbances) even though the crucial quantity
determining whether upstream propagation of disturbances is possible is the goup. not the
phase, speed. Subcritical flows can be expected to be influenced by small downstream
disturbances. This might be true even in flows that are supercritical according to this
classification scheme, since it does not cover nonaxially symmetric perturbations, but the
propagation characteristics of nonaxially svmmemc waves (see Leibovich et al., 1986) is
more difficult to deterrmine. Benjamin's criticality classification is important because it
seems to be useful in correlating vortex breakdown data (Leibovich. 1983, 1984), as
Squire (1960) and Benjamin (1962) had proposed. In particular. the evidence (see
Leibovich. 1978. or L) indicates that flows upstream of vortex breakdowns are
.uper.ritical. while the mean flows downstream are subcritical.

To determine the cnticality condition of a given columnar flow. we ask whether it
,an sustain infinitesimal waves of the form

0 = xpr) eik z .  36)

which means that equation 16a) has a solution in the form

(D + E0

tor infinitesimal c. This leads to a problem similar to that in §3. 1, except that we wish to
consider columnar flows other than the specifying flow (which has (D = 0, and. rather than
fixing the wavelength (= L) and searching for values of A for which the linearized problem
is solvable, the question is turned around: A is fixed. and we ask if there is any real value
,t k (= 2=/L for v, hilch the linearzed problem is solvable. If so. a stancing wave \v ith

,avenumber k determined is possible and the tow is subcnriicai. If not. the tow mis
,Lupercritical. Let

01-
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then we may write the differential eouauon for the small wavy perturoations as

0-o ( 38)
- K.0 = 4.0.A O.

We now regard this as an eigenvaiue problem for k2. with A fixed. It is. due to

(36), an ordinary differential equation for X in standard Sturn-Liouville form and subject to

,he boundary conditions ; (a)7(I).

We know that the specifying flow is supercritical for A < 4) (because there are no

:igenvaiues of (17) in this rane of A. either corresponding to coiumnar flows or to wavy

flows. according to 3.1), and subcritical for A > tI 1 ,because. accordinz to the

observ'ation of §3. 1. there is a wave with some wavenumber for each value of.A >

with waves with indefinitely long wavelengths branching off indefinitely ciose to LIq). If

•= o, it is clear that the eigenvajue k 2 of (38) vanishes, and we may summarize by

observing that the eigenvaiue k2 of (38) is negative if A < N , zero for A = .o, and

positive for A > ,4), and that
dk 2
___ > 0 at A=
dA

We wish to characterize the criticality condition of the columnar vortex branchin,

.,)f from the specifving rlo, at A = uLq0 , on either side of the bifurcation point

explore this. we differentiate I3) with respect to \. to amvc at an rnhomogencous

.2-quation for

Ox Ox dk 2  dt( .A 39a)

OA r)A dA dA

,.k here.

dA,

S- X).r/
(1(1)

S ince / satisties 30SJ.19 is .solvable oniy it



40)

We are interested in t40) at ,A = , (D = 0. The numerator of (40) is

,where we have used the notation ot 21) and 32b). The only difference in (40), when
evaluated at the bifurcation point for either of the intersecting solution curves is the

Ak2 .Airecuon. ( . of the uarticuiar solution cune aiona which !- s evaiuated. On the
dA

.,pecifying flow.- 0. and on tne second branch ( = y ,the eigenfunction. apart from

an arbitrary multiplicative constant which we take to be unity. ITlus. along, the specifvin,,
flow. (40) reduces to

dk 2  'p!I(r;(-) (42)

dA

To calculate the numerator or (40) for the nontrivial bifurcaune solution. we
Jifferentiate i32a) tvice with respect to .\. The result. when evaluated at (1) A t

0, , + -. i ),,i ,12p (r) =

and solvability tor (j requires

'+- +' ' - p-r r

omninin, 3,) i th (41). wc rind :at on the hifurcaun e brancn.

)q-~

(P~ (rX-



.vnich is just the negative or (42). 'Fhererore. since K- increases Lnroun zero as .
:ncreases through 4,,( on the specifying flow branch. is must decrease nrouun zero as .\
:ncreases through x on the pnincipai branching solution.

Thus. we have shown that the criticality conditions hoidinu on me specfyin fiow
ind that hoidingi on the flow branchinu ranscrticailv from it are transferred at the
Difurcation ooint: this will be iilustrated in ,4.3. If we hold A fixed. our Drobiem
,.onforms to that considered by Beniamin i 11962), who labels each columnar flow uistinct
:rom the specifying flow - and there may be more than one depending on the value of A -
,is conjugate' to the specifying flow. Benjamin shows that, if the priman flow is
,uoercricai. then all conjugate flows must be subcnitical. This is consi-tent with the local
results of this section.

4.2. Stability is not transferred
Stability of the steadv solutions treated here cannot be addressed using the BHE.

-rice it contains no dynamics. Instead, one must return to the Euler euuatons. As a ruie.
%orex flows tend to less stable to nonaxisvmme-c pertrbations than to axially symmemric
ones. A bifurcanon point is usually associated with a transfer of stability, so that in the
present case. one would suppose that the specifying flow is stable and the principai branch
is unstable on one side of the bifurcation point A = 0, with the reverse being the case on
the other side. This is assured if the eigenvalues of the temporal lineanized stability
problem, deriving from the Euler equations. are simple. and provided they move with a
nonzero speed across the imaginary aLXis. In our example (33). at least when strictl.
restricted to axisvmmetric disturbances, the temporal eiTenvalues are simple at the
bifurcation points of the BHE equation. but bifurcation need not be associated with loss of
.tability'. which implies that the temporal eienvalues in such cases are confined to the
.maznarv axis. This may be seen from Ue axialiv-svmmetnc Howard-G upta euuanon
I toward _ GuPta. i062), ;hich coverns tie temporai stability problem. Plis uuation is

.denticai to i7a) provided oniv that the axial velocity of the snecfvin u :.ow. ' \(r . c

0t)
replaced by W(r - c. where c is the (in g enera; mpiexi phase speed, and T = ;(o is

,he temporal eigenvaiue. In the example vortex (33). rifurc. :on does not lead to loss or
,tabilitv. I lere the Ravleizih discriminant is positive and there is no axiai shear. 1hereiore,
;v Raviliehs ( 182) stability cierion, i33) is linearly stable to axisvmmeuic perturbations
:,r all \. On the other hand, the same stability condition must hold for the solution
'rancnine trom this point, at least for a iimited range of A. This must be so since tile
:nearzed stability characteristics there are determined by the unperturbed fov at the
etfurcation point. %% hich is the same tor ail branches meetin, there. Because tie veocity
:'rotimes on the hifurcatinu branch deform continuousiv ,. ith A. there % iii he a finite .\

::irervai over vhich the Richardson number criterion or Ilovara and Guta. . hich
eneralizes Ravleiehs criterion to admit axial shear. continues to guarantee linear stability

axiailv-,vmmemnc perturbations. The eienvalues. cT. of the temorai stability proniemn

__. Q



:an pe iouno from me ei-,envaiues. Li. of the statc bifurcation prooiem in the primary itow
-eiectea for numericai treatment (tor wfnich W\ r) = i ). since it is easy to snow inat

(Y=tkI1 --

Fhe eiigenvalues 5 are simple and lie on the imaginary axis for all A. and the zero
cigenvalue is assumed when A = a.

Szeni 1988) has shown that. within the confines of the Amoid-Casimir theory.,
these results may be extended to weakiv nonlinear stability. (The interpretation of this
theory and its significance. as appiied to this problem. is a compiicated matter that requires
aind deserves further study. i

4.3. Numerical results

Figure i is bifurcation diauram for the columnar solutions branchinig from the
primarv flow 33.34) with ox = 14. showing the principal and the second bifurcating
branches. iThe locations of the points of bifurcation are given in Table I in §5.) The
branches are described by a measure of the perturbation axial velocity. We took this to be
Lhe extreme value cregardless of sgn). and on the principal bifurcating branch. on which
the perturbation axial velocity is monotonic in r. this always occured at the axis of rotation.
On the second branch, the perturbation axial velocity if not monotonic. On this branch, a
discontinuity appeared in the bifurcation diagram based upon this measure described: for a
range of swirl parameter. the extreme value occured on the axis, but shifted to a point off
:he axis, where the perturbaton axial velocity was of opposite sign. This is illustrated by
•,.vo sets or points in the fi ,ure. one as described, and the other (smooth) set arrived at by
2,iottine oniv the perturbation axtai veiocity on tne axis.

(FIGURE 1 .\BOUT HERE)

The principal columnar branch plays an important role. as will be seen
..ontrast. the physical significance of the second and higher columnar brancnes i,, uii,,,:ar -
ior the larger amplitude perturbations on tnese branches. axial flow reversals are
necessarily accompanied by internal zeros of the swirl, and hence instability according to
:he Ravleih-Svnue (1933) criterion (abbreviated subsequently by R-S). T is may be seen
a tigure 2. 'which shows profiles from three points on the second branch of figure i. Here

:i bifurcation point occurs at A = tp), and the profiles are drawn for increasing values of
\-UL0. One can also see from ine profiles for axial velocity how the discontinuity in the
1 ifurcation diaLr-am discussed in the previous paragraph arises. We ,.viii not turther discuss

,:olumnar branches other than the principal branch.



FIGURE 2 ABOUT IHERE)

For A < Li,), ihe nrincipal branch shows a developing wake-like axial velocity
profile as the swirl parameter .\ is decreased from the brancn point L14), ds may be seen in
tigure 3. The swiri veiocitv is distorted as well. with the peak swiri movin. outwards
relative to that in the primary vortex. Both of these characteristics are qualitativeiy like the
lime-averaged profiles measured by Garg and Leibovich (1979) (further analysis of this
data is igiven by L and by Leibovich. 1978) downstream of vortex breakdowns. which are.
like the solutions here. wake-like and subcritical. If the AVft0 is decreased below a value
of about 0.5, the swirl velocity develops an internal zero. and the branch will become
unstable according to the R-S criterion. We have nevertheless continued to

(FIGURE 3 ABOUT HERE)

follow the branch. beingz curious to know if it couid be conunued to zero swiri. or whether
it would turn around. We found that it can be continued to zero swirl. and the curvature or
the magnified part of the bifurcation diagram of fiure I indicates that the axiai speeds (ect
large as A/fto ---, 0. The axial profiles shown for YVjm = 0.001 suggest that the limit flow
becomes discontinuous, with a vortex sheet forming in the interior. The resolution of the
singular limit behavior as jV4.), --, 0 requires special treatment. and §4.4 is devoted to this
question.

On the A./i > I side of the principal branch, the axial velocity profiles are jet-like.
and the peak swirl moves towards the axis relative to that in the primary vortex. Examples
are shown in figure 4. No tendencv towards R-S instability occurs on this side of the
bifurcation point. These

i FIGURE 4. ABOUT ItERE)

velocity profiles not only resemble the profiles measured by Faler and Leibovich (1977.8)
and in the references cited in the previous paragraph for flows well unstream of vortex
breakdown. they also can be accurately fitted, as can the wake-like solutions previously
discussed. by the same exponential functions used in those references. We note further
,hat the experimental data shows the upstream flow to be not only jet-like, but supercritical.
T'hus. the primary vortex %,ith unitbrm axial velocity generates. through its principal
iiranch. vortices of the same character as those found on hot/ upstream and downstream
,ides of experimentally observed vortex breakdowns. so far as the shapes of the profiles
and their criticality conditions are concerned.

For A < .u), the unmarv vortex is supercritical and the principal branch is
,ubcritica!, and according to the general theory of §4. 1. these characteristics should be
¢xchanied when A > uL,,. ',We have tested this by computing the generalized Froude
:iumber. N. proposed bv Beniamin 11962). This is defined to be

-'I



N-

,here c. and c. are. respectively, tie maximum and minimum phase speeds of
:nfinitesimai axisvmme-ic waves of extreme iength propagating on the vortex. If N > 1. a
vortex is supercriticaL, and if N < I it is subcritical. We have computed N on both the
primary vortex and the principal branch, and the results. given in figure 5. confirm the
general theory on exchange of criticality at the bifurcation point.

(FIGURE 5 ABOUT HEREJ

4.4. Singular limit of zero swirl

For the specifying flow (34) that we have been using as example. the zero swirl
limit A--) is irrotational. and the constant speed flow v = r2 is unique. Therefore no
differentiable solutions exist except for the specifying flow. On the other hand. our
numerical results suggest that the limit A---+ 0+ along the principal columnar branch
develops a strong shear layer tending in the limit to a vortex sheet separating t%4 wse
irrotarional limiting flows, in each section of which the flow is oppositely directm of
uniform infinite speed! We explore this bizarre situation by an asymptotic deve th at i
seems to fit with the numerical findings, and which gives the asymptotic dependerof the
velocity levels, and of the shear laver location and thickness on A.

It is convenient here to work with the total streamfunction v. governed bv 11).
rather than the perturbation from the specifying flow. For the specifying flow 134), the
iimit of equation t 11) when A=) is D 2w = 1). with a soiution that is linear in r-. We assume
lie existence or a discontinuity in this limit, located dt r=r,, at vnich the streamiuncuon
reaches its minimum value, \jxr,) - - lJ(,A) . The analysis of this section in simplified by
,he chanue of variable

Then we may write (using the condition that v = 0 at l i and V = - itr = -. nd

defining rl r I

= q . tor Tl - <45)

(I- --7- --.. tor t - >



For A ver, smail but not zero. we assume the existence or a sin rie internal laver.
,,entered on r"1 and with a thickness 6(A) that tends to zero as A---- +. mat loins Enese Iwo

constant speed soiutions. Furthermore. the numerical resuits suggrzest that vl\A -- as

V- 0. and we also assume this.
The solution to the outer problem has been descrioed above, and now we seek a

structure to the internal boundary laver separating the two irrotational regions. It is
important (and easy to show) that D 2W = 0 to all algebraic orders in the small parameter in
(he outer regions. so that the full outer expansions retain the form (45), with the
coefficients of rT being functions of A.The point rl*. and the constants C and D occuring in

the outer problem are not vet known and must be deterrmned by matching with this internal
boundary laver. The argument is rermniscent of activation energy asymptotics (see
Buckmaster and Ludford. 1982). Stretch the radial scale nearf" = r,, by taking

T=l--r-6X =1*(+1.X+ . -46)
11*

where 6 is the length scale appropriate in the laver and it is assumed that 6(A) ,

A-*(). Near Tj, the streamfunction is continuous and the appropriate scale for it itz (A). _

-,o we wnte

ll, + X) + - V*(A)[ I + E(A) y(X:A)1 47)

in the laver, where the asymptotically small parameter c(A), like the parameters (A) and

,.J*(A). remain to ,e identified. From the definition of - '.*(A) as the extreme value or 'u.

we must have

y(0:AI = v (0;A) = 0 (48) t

(IVwhere I -'and we also have v _ 0 for all X. We substitute the ansatz (45-47) into

11) and invoke (34). This yields

2cLA 62
hr + -- yey) =)
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The distinguished limit arises for 2ojtv F and 2cLA6 2e4 (xW. '2rl, both O(1) and we

,hererore set

2 *e 4(- 2A 6 2e4 ' r, 1. (49)

which leads to the euuation

2TI [* -o. (50)

, +4X 1 + - -V

with exponentially small error. We may now look for a solution to this inner problem in
the form of power series in the small parameter. It is more convenient n the analysis to

regard c as the controlling small parameter rather than A. and so we take

Y = Y0+ EY +... (51)

U = ILE + 4i2C-E.., (52)

i = '10 + y ±E + (53)
2r1,

,',nd the sihtlv unconventonal form of the last expansion makes the matching with the
,u)ter solution simnier.

The euuanons for first two coefficients. Y() and Yl, of (51) are

YO + e 2 y = ( (54)

.2 Y-" ,._ cc C e20j .55)

;v + 2C = -L7X- '1e 5.!0

The solution to (5 4) sansr'vinL (48) is

}()(X) = in sech(X) 56)

and the solution to (55) is

-



(X) =4-[ I lx - iinn X - 1 Xtanh X1.

We now match the strearnunction in the inner re'on with the two outer regons.
\latching to second order in c yieids

I = ()-r- E(+ H))-t- v-58a-

C 1 + E In 2 -- 2b 58b

D -- + 1-I ) cb) 5 c

L= CE1 + £- in 2 ) 58d)

22 4t

S= rJ., (58e)

and from these we can find

A = 2T,(2ot6 expt2wc K))-2. (58f)

The numbers y2 in (58a) and b2 in (58c) are undetermined at this order. and therefore
our solution is compietely determined only to one order less than we have shown - on the
other hand, it is necessary to match at the level shown to accurately determine the solution
.o that order (i.e.. to within an error of 0(E)).

The composite expansion for vi constructed from (45-47.56 5' is

MJ=- (1 + n 2) I n -- ( q) 159)
CXC 1,

i-I + e (I- In 2i 10(l - q*
T1

: lI . l - n t1.rl -  91 t
- ,.ech ( - I-.--65 6

- 2T )

A here 11(t) is the unit function. lt) =I for t > o- I f() and Ht) j for t .



Equations 58') give 6. r., and A as a funcuon of the parameter v. and from tnem

,he dependence or 6 ana r, on A can be evaluated to yield the desired asymptotc

relationship between these parameters as A---:). As seen in figure o. the differences
hetween the computed and the asymptotic values are only a few percent for A=0.01 The
asymptotic solution (59) is compared in figure 7 to the computed streamfunction and axial
velocity for A=1.769.10- 4 . The agreement is quite good. considering the fact that xj*=
).13. not vet large as the analysis assumes. meaning that the asymptotic relation is good far

beyond its expected region of IW I>> 1.

(FIGURES 6 & 7 ABOUT HERE)

The azimuthal velocity component, v, is exponentially small except in the shear
layer. The shear laver is a concentrated region of vorticity, with both axial vorticitv arising
from the swirl as well as azimuthal vorticitv arising from the variation in axial velocity

across the laver present. .s A-+W. the swirl component v 0 0 in the iaver as 'NA /Iln Al.
which is very much slower than A.

5. Periodic wavetrains
The specifying flow is subcritical for A > t0: for any A in this range, an

infinitesimal standing wave is possible. with wavelength depending on A. Fixing the
wavelength at L. we continue infinitesimal standing waves to finite amplitude for the
specifying flow (34) with cc = 2 and (x = 14 using the methods previously described. The
larger value of a was used in an earlier studv bv Leibovich (1970), because it provided a
,good fit to Harveys (1962) experimental data. The eigenvalues 4pm, determined
numencallv as described in the Appendix. are given in Table I for ax = 2 for L = n and 20.
.nd for cx 14 for L = t).20.100.

cx L 400 4o1

- 1.8433 1.9693 t).2743
i0 1.8433 1.8547 o.2743

14 0 .17390 .17986 .o1147

2 .17390 .17445 o1147
100 .17390 .17392 .'1147

Fable i. E:;.zenvalues of the ineanzed orobiem for selected values of L ana cx.

'6-



Figure 6 is the bifurcation cdiaram for the case (x = 2 ana L = i (). The diacram for

,= is aualitativeiv similar, but the separaton between the curves for the coiumnar

branch and the first wavy branch cioses too rapidly to oe conveniently illustrated in a
drawing. The soiid line gives the columnar (00) branch, open circles the fundamental
vavv branch (01). and the close circles the first harmonic wavv branch (02).

(FIGURE 8 ABOUT HERE)

We next explore the waveform for three flows on the fundamental wavy branch for

the case a = 14. L=10. The streamfunction at a fixed value of r -0.25 is plotted in figure 9

as a function of z over one wavelenfth . for three values of A As ,'u,o increases, the

wave trougn becomes increasingly sharp and concentrated. and the wave crests
increasingly broad and flat. The same trend is seen if the fundamental wavy branches for a

sequence of flows of increasing wavelength L are sampled at fixed A.u.)*

(FIGURE 9 ABOUT HERE)

Figure 10 shows streamlines projected onto a meridian plane for increasing values

of A,/4(X0 for the case L = 6 and cc = 14. The deceleration of the upstream flow caused by

the wave is apparent at the smallest value of A/ o0 shown. The other two streamline fields

reveal a region of closed streamlines, with the size of the recirculation region )rowing with
.,\&oo.

(FIGURE 10 ABOUT HERE)

The chanzes in waveforms as either (A - .) , or L increases are illustrated in

tigure 9. Increases in either of these parameters appear to produce a wave shape with a
very sharp trough, in which there are strong axial accelerations. rapidly tending to a broad

flat crest. Over most of its extent. this broad crest is an essentially coiumnar flow. bUt
distorted considerably from the primary columnar flow. 'hese features are characteristic of
a solitary wave, with L = . on a columnar flow different from the specifying flow.

Velocity profiles at the wave trough are given in figure 1 l a.b for a two swirl levels
large enough to cause a rezion of reversed axial flow to appear. Figure 1 Ic shows the
difference between the axial velocity at the trough and the axial velocity at the crest. where

Lhe flow is nearly columnar and. as will be shown. virtuailv indistinauishable from the
irincinai coniugate flow. This is a nerturbation caused io the principle con luwate Now hy

the disturbance concentrated near the wave trough, rather than a perturbiauon to the

-pecitving flow. The profiles in i -',: are similar to the perturbation axial velocity in soiitary'
waves on the snecifving flow.

ouim nuuni a muniii I I ilqi n~ln l { 7 -



(FIGURE !i ABOUT HERE)

The observations we have made about the apparent appearance of solitary wave

behavior will now be put to quantitative tests.
The characteristic ien,.th of a solitary wave can be measured by, say, its half-height

length. According to the veaklv nonlinear soiiton solution (29), the half-height length (or

any other measure of the soiitarv wave length scales with the inverse square root of the

wave amplitude, 1/ --a. or alternatively, with I/"IA-ptool, at least for 1A - N l

sufficiently small. T'he axial velocity perturbation at the origin is proportional to the wave

amplitude, ca. In figure 12 we have plotted the half-height calculated from our numerically

determined solutions on the first wavv branch for several wavelengths L = (6,20,100),
agrainst the axial velocity perturbation at the origin to test to see whether the amplitude-

length scaling appropriate to the weakly nonlinear solitary wave is approached by a wave of

the computed periodic wavetrain. Waves exhibiting that scaling will have a slope of - L on

this log-log plot, and the soiid line drawn has that slope. The wavetrain with period L = o.

given by the open circles, deviates substantially from the - 1 slope both for small and large

wave amplitude. The longer waves, however, accurately display the solitary wave scaling

for amplitudes ranging from fairly small values to quite substantial ones. Marked
deviations from the weakly nonlinear solitary wave scaling occur for for very small axial

velocity perturbations and for axial velocity perturbations of 0(1) and higher. As will be
seen in the next section. strong nonlinear effects distort the solitary wave on the primary

flow in the same way, and begin to substantially modify the weakly nonlinear scaling at
about the same level of axial velocity perturbation. These deviations from the weakly

nonlinear scaling do not signal departures from solitary wave behavior, but rather
:ransitions to a strongly nonlinear solitary wave reeime. We note that for large

;erturbations. the L = n case falls on the same curve as the longer waves, implying that the

period of this wave is not iong enough to exhibit solitary wave behavior at small amplitude.

hut that it does develop strongly nonlinear solitary wave behavior at large amplitude.

(FIGURE 12 ABOUT HERE)

We conclude from these considerations that one wavelength of a periodic wavetrain
rapidly approaches a solitary wave as the wave amplitude increases above a modest level.
The resulting motion mav be characterized either as weakly or as stronyiv nonlinear solitary

waves, depending upon amplitude. Fthermore. the columnar low to which these
,olitary waves tend. at distances from the station of maximum amplitude large compared to

,he half-length L1 ,, is not the specifying flow. but the pnncipai conjugate flow. This point
is illustrated in fiuure I.,. Fiure iLa shows me difference between the streamfunction or



.nncivai coniugate flow and that of the first wavy Drancn as a iunction or r thr wave enein
L = t for three values (0.05. 0.25. and 1.0) of (A - -t))/ L, corresponiinu te waves oi
increasing ampiitude. .\t the largest (A - .u )/ f (hence the largest ampiitude . tie
difference is barely detectable. Ficure 13b shows the same tendency as L increases with
the wave amplitude fixed.

FIGURE 13 ABOUT HERE)

6. Solitary waves on the specifying flow

When the specifying flow is slightly supercritical. a weakly nonlinear solitary wave
(29) is possible. A diaeram summarizing the numerical continuation of this solitary wave
,oluuon branch to more strongly supercritical conditions (A decreasing from i, x; note that
the scaled distance from the branch point. IA - ,i0I/4), ranges from zero to a maximum or

unity) is given in figure 14. The diagram superposes two measures of the wave disturbance
of the specifying columnar flow, the maximum perturbation axial velocity (w'max) at the
plane of symmerv z = 0. and the perturbation axial velocity on the axis at this plane
(w'(0,0)). The two measures agree for values of IA - .a001/tp. as large as 0.8. For larger
values of this parameter. the point at which the perturbation axial velocity is a maximum
lifts off of the rotation axis.

(FIGURE 14 ABOUT HERE)

The shift of the point of maximum axial velocity disturbance may also be seen in the
..xiai velocit. profiles at the symmetry plane, Profiles of the complete axial velocity
-omponent are drawn in figure 15 for four values of A. Three of the protiles include
negative values of w. which implies the existence of a region of closed streamlines
..ontaining reversed axial velocities. When the maximum perturbation lifts off the axis. a
high-speed upstream-directed jet forms in the interior of the recirculation recion. and the
dividing streamline develops a dimple at the axis and is no longer convex. We are unaware
of observations of such a phenomenon. and believe it to be physically unrealizable.

(FIGURE 15 ABOUT HERE)

Projections of the streamlines onto the meridian plane are shown in figure 10.
These plots show the emereence of the recirculation reiion. We have found that the flow
'ield is represented with reasonable accuracy by the weakly nonlinear solution (29) for
waves leading to axial velocity perturbations strong enough to cause flow reversal. This is



, significant tining, since we may tnen capture the essenials or our numerical
,:omputations or a strongiv perturbed flow with the simpie

FIGURE 16 ABOUT HERE)

:'ormuia (29). To snow the levei of azreement, we have compared (for a = i4) w'(0.0)
from our numencai computations with the approximation (29). This is found in figure 17.
together with a comparison of the dependence of wave half-length with wave amplitude
(measured by w 10.0) with the - , power law dependence obeyed by the weakly nonlinear

solitary wave. The weakly nonlinear solution (29) overpredicts the wave amplitude and
length, but the differences are less than 10% for wave amplitudes large enough to cause
stagnation and reversed axial flow.

(FIGURE 17 ABOUT HERE)
Contours of the perturbation streamfunctions. as predicted by numerical computaton

and by the weakly nonlinear approximation (29), are shown in figure i8. We jud ge the
agreement to be uuaiitatively good for ail three values of [A - .00i/p., hown.
quantitatively good for IA - = 0.1, and acceptable for some purposes for the
higher values of IA - iqI/t 0ot. It is worth noting that a stagnation point first appears in the
flow for 1A - 4oo/M 0.25, so the three cases shown in figure 17 range from i.wxirately
to strongly nonlinear.

7. Discussion and Conclusions

We have shown here the connections between fully nonlinear standing periodic
wavetrains and solitarv waves and the underlying columnar flows. From a iven primary,
or -specifying '. coiumnar flow, other columnar flows. solitary waves, and periodic
wavetrains may be constructed. The solitary waves exist only when the primary flow is
supercritica, a condition that arises when the swirl rate or axial vomcit, in the primary
flow is less than an easily determined critical value. Periodic wavetrains exist oniv when
the primary flow is subcritical, which arises when the swirl rate exceeds the critical value.
On the other hand. the periodic wavetrains rapidly attain the characteristics of solitary
w.aves as the swiri. and with it the wave amplitude, increase for fixed wavelength: or as the
wavelength increases at fixed, but finite, amplitude. These solitary waves do not propagate
on the primary subcntical columnar flow. Instead, the flow far from the wave center is the
principal conjugate columnar flow. The latter flow. in turn. connects to the primary tlow at
,he critical swiri level, and as we show is supercritical %k hen the primary flow is subcriticai.
Thus the requirement that flow upstream of solitary waves must be supercnibcai is
maintained.

The simpie. partly analytical. fornuia for weakly noniinear soitarn %raves is shown
o it the numerical data for fullv nonlinear solitary waves very well for a substantial ranie

- U)-



ot amptitudes. The errors associatea with this fit are reiativeiv small even ior waves %% un
amplitudes large enough to cause stanation points and reversed axiai flow to occur.

When stagnation points torm. and with them recirculation regions or closed
,treamiines. we must face the special questions concerning the interpretation of the results.
This is due to the well-known nonuniqueness of steady, axiallv svmmetric. inviscid tlo,,s
with closed streamlines. When closed streamsurfaces exist. the specification of the
vorticitv distribution by functional forms for H'(W) and F(xt) deterrmned by the upstream
flow need not be continued into the region of closed streamlines. In fact. if the flow is to
he steady and to be the limit of a viscous flow as the viscosity vanishes, the vorcity in the
recirculation region must satisfy the constraint found by Prandtl (1904) and Batchelor
(1956), which requires F(x=) 0 and H'(W) = constant. One might think that a solution
with closed streamlines, ignoring the Prandtl-Batchelor (or PB) condition, can be made
consistent with it by recomputing the flow inside the dividing streamsurface. using the PB
criterion to fix the interior vorticitv distribution, but maintaining the exterior flow and the
shape of the dividing streamsurface. This generally cannot be done. however, while
halancing the interior and exterior pressures. Thus. if one insists on satisfying- the PB
condition, flows computed with an arbitrary specifying flow upstream must be discarded if
recirculation appears unless a free streamline type of problem is solved in which the
boundary shape between the external flow and the internai (PB flow) is part of the problem
(see Leibovich, 1968 for an example of such a construction).

On the other hand, the PB criterion fails if the flow is not truly steady. (I' a may
fail in other circumstances, as described by Batchelor, 1956.) It is ea--- to imagie earv
inviscid flow developing due to external forcing of various kinds, and then settling a
phase of very slow change. If closed streamlines are present. then viscous effect: act
and cause the flow to vary with time. But this development is very slow. and so i-,jie is
interested in time intervals short compared to the viscous time (of order R2/v, whL-re R is a
length scale characterizing the recirculation region), then the PB condition does not
,onstrain the vorticitv distribution. The PB criterion also fails if the axial symmetry is lost
'even if the nonaxiailv symmemc component of the flow is infinitesimally weak) since
there is then fluid exchange across the nominal closed sreamsurface. Our interest in
vortex breakdown leads us to contemplate flows in which )oth of these conditions texternal
forcing driving flow axially-symmetric development ot ci., ed streamline reqions on inertai 
time scales, followed by, or coincident with, svmmetrv breaking instabilitvi are acuve. If
an axially-symmetric recirculation zone existed and then was broken. the fluid exchange
across the nominal boundary would, in our view. create an interior vorticity distribution
that is not inconsistent with that in the external flow upstream. Thus the external form for
I '( I) would be reasonable in the interior (but the entire flow would of course be perturbed
hv the asymmetrc motions). and a reasonable form for the circulation in tie interior would
h e not F(fi,) but - Ff ij). T-his alteration is dynamically compatible with the flows computeci
iiere tas pointed out in L) and produces a flow with an interior swirl sense in agreement
with that in the external flow, which is certainly required if there is exchange of fluid.
Thus. it is our view that the flows calculated here having, recirculation renons are sensible.

mwm~i,* n ;in im



althougn possibly tox) simplistic, mociels of real vortex flows witn stagnation points and a
,,emblance of a recirculation re,,,ion (albeit a broken onei. We are in the process of
exploring the breaking of the sVmrnmetrv of these flows produced in this paper. and intend to
report on that investigation in the future.
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Appendix: Numerical Implementation

\.1 Discretizatiun
.-\ finite-difference discreuzanon is done on equauon i6,. wntten in the iorm:

D2 t + i2(0 .r:. = r) = 0,
17f r or)

The finite-difference approximation corresponding to this form of the radial derivatives has
Lhe property that the contribution of each cell boundary to the circulation around the ceil is
fhe same for the two cells adjacent at that boundary: the result is that any Loup of cells
ausfv the Stokes theorem when individual cells do, similar to the flux consistency in
•"onservative" discredzauon of the Navier-Stokes or the energy equauon.

We expect solutions that have sharp axial gradients. and non-uniform enrd spacing
may be necessary in the z-direction. This is done by defining a computational coordinate
-eiated to the phvsical coordinate z by z=f(LK) ((')fO): the z-derivative in ,A I becomes:

o:(O 1 O ()

Equation (A 1) is discretized by central differences on a rectangular g-rid having uniform
spacing in r,), corresponding to variable spacing in z. The finite-dimensional version or
equation nA) is-o

D (D + 2(_ ,A ) = ) 
A 2)

where:

(D);, =_ Vb ri, .l

D D' + )'

r --'r j=q and i=p- i

-2r (t (,)2) j=q and i=pSDr) r.3

Ar -( r ) jq and i=p+I

Otherwise



W I 2) i--p j=q

-i -t~) ~ -42) *.- =- 2 ~ p J =LD),, A=_ - .. .. =p p=q.l

I) (Otherw'ise

D', D' are directionai operators'. containing enties relevant to the derivatives in r. 2
i, ;-uons. Each contains three nonzero diaonais in a block structure as shown in figure
.\ 1. The separation of D into its direcuonai components and the structure of these
2omponents will be used in secton A.2 below to form efficient and consistent concepts of
separation of variables and inner product for the discrete problem A2.

(FIGURE A l ABOLT HERE)

The contribution of boundar points with Dirichlet type boundarv condition is placed
in 12 when non-zero: for Neumann type boundary condition. an external node is detined

d A),
outside the boundar,, its value given by the first derivative at the boundary: for d0. we

set (1,=1 0$. in the equation for the boundary node (Df. The singularity of (A1) at r-() is

not explicitly present in the numerical problem, since (D-- at r=0. and the discretization of
(A 1) takes place oniv in the interior of the domain-a finite distance from r=O (more on this
singuiaritv in section A.4).

A.2 Algebraic Treatment of the Bifurcation and Continuation
In the neighborhood of any bifurcation point A=., we expand the solution to (A2) in

,I smaii parameter c. as in 18):

A L1 t g K t - - -e K -r

Substituting into (A2) and coilecting terms of like power in F, we obtain the
cquence of equations. anaogous to (20). the first three of which are:

L o D+ LtP -2 g + ' ') 4a

L 0 = , P o o .\ 4h

L Q2 = - N9P1*>n0 - ,,P _ - -O dQi - S)1OnQo(Qo( - \ 4-c
KI IP N&DhQ

A here me denvativcs ot are detined followin, 19):



t P qij - ',u(iP)pu j(t--l p _

S pqij =  _) -pqijkI = _

((t&=()

sk) = pk) QOk)

The eigenvalue problem (A4a can be solved by separation of variables: let Qo have
ihe form. equivalent to (21)

r z

where aria.) may be called "directional" components of 9o() Substitutin,, into tA4a) and

Using the repeated block structure of D we obtain:

[( r plill '' P(1 lil '- O '.plill ( ') ((-I))

+ (')p ((D)Iqij (-)M =

which is an equality of two rank- 1 matrices: there exists therefore a scalar f3 such that:

-f3 ( )q -r DZ)1 q j = ( .A 5a)

P D),Q- Li (Q,-" \5hi

Note that P';) is invertible since it is a diaizonal matrix having p(rij entries on its diagzonai.

'A nich are tositive.

The eigenvalues O3n, [Lnm and their eigenvectors are found from .A5) by the
ridiagona set of subroutines from Eispack.

Define an inner product as follows:

<xL> = XT S v A )

.iere:

,S)PCI, --, S z) ),

.;m.



and S', S' are diaaonai: S' = dia _ S. = iag[ f': ,j (the first and last ciements may

,)e different due to the boundary conditions): both are positive uefinite.Under this inner
product. P'I))'L is seif-adjoint and the eiienvectors of iA4a) are orhogonai.

Multiply (A4b) by P, )-I to obtain the seif-adjoint form of the operator. and we can
impose a solvability condition:

(P; [S, o ( _. + n A)j ,.o > AT)

This is used to find Kt). as in (23). To solve (A4b) for Q , we use an eigenvector

expansion method. Simiiarlv. K, and 02 can be found from (A4c). and so on to anv desired
order. We used two or three terms of (A3), depending on the type of bifurcation
encountered.

Let Q6 and take the derivative of (A2) with respect to A:

I_ (P =- Pf _) (AX)

This is a system of ODE's for (D(A), equivalent to (29b): given initial conditions
L(A0) from (A3) or the weaklv-noniinear estimate (30), this linear svstem can be solved
for (1. We use Sparspak (George et al. 1980) to solve (A8) and a Runge-Kutta integrator
(Press et al. 1986) to integrate over A.

Given 0 and A, an approximate solution of (A2), we may define a Newton's
Method iteration I Dennis & Schnabel. 19831:

jk+i = 0 --[2+A41)-- 0) [D+-_ ,A(I (A 9)

where:
-- \pqij = j(P__)ij

)N o (Q)rx _QI )pqij -- . I"I

Under some mild assumptions. in particular that (PO be close enough to the exact
solution and that the Jac.obian be nonsinzular and Lipschitz continuous. this iteration wiil
converge to the exact solution at quadratic rate I Dennis & Schnabei. theorem 5.2.1 1. If we
make the initial estimate (A3) and the inteLration (A8) accurate enough and stay away from
hifurcation points (where the Jacobian is sinauiar), then convergence or this step is
practically guaranteed.

We use Soarspak to solve each step of (A9). and a line search algorithm to improve
global convergence propertes. Te structure of the Jacobian in A9) is the same as that otfL
ii (A8). so the most time-consurming part of the Sparspak algorithm-ihe structure
Jecomposition-needs to be done only once.

- Ct)-



.k.3 Numerical Elrrors and Converizence
Two types of numerical errors need to be considered: the discretization error (the

difference between the exact analytic solution and the exact solution of the discreuzed
svstem), and the convergence error (the difference between the numbers actually obtained
and the exact solution of the discretized problem). Convergence errors are important in the
corrector step only since those occuming in the predictor steps-initial estimate and
intezration-are irrelevant when the corrector step converges.

The initial estimate need not be very accurate, as explained above. However, if it is
too inaccurate, then the corrector procedure may converge to a different branch or not
converge to a solution at all. The initial estimate will improved as E--4) in (A3), but the
intezration and corrector steps will lose accuracy as the Jacobian becomes singular near the
bifurcation point. We found that with c=0.01, taking up to 3 terms of the series (A3) leads
to convergence of (A9) and reasonable accuracy for the subsequent integation.

The convergence errors are determined by the stopping criterion of the corrector step
(A9):

11 D D + .(_.,A) 11, <_ 62

The change in il(l in the last Newton step is usually considered to be of the same order as

the convergence error. For 6=10 -8, the typical value was: II A 11=10-5. As shown below,
this is much smaller than the estimate for the discretization error, and we may therefore treat
the computed solutions as "exact" solutions of the discretized problem.

Equation (A2) was derived using central differences, and is second-order correct in
Ar, AC. The aid transformations z---K used have a finite derivative everywhere, and
therefore do not effect the order of the truncation error (Kalnay de Rivas. 1972), therefore it
is considered second-order also in Az. Higher-order accuracy, as well as an estimate for the
,iscretization error, may he obtained b.,,ichardson's Extrapolation. Computation was
repeated for sample cases with ands having resolutions of (Nr,N,), Where N. & N,

10,20,40): 9 different g-rids, followed by a 2-dimensional extrapolation to - (.

Typical values of the reiative difference of the second-order solution from the extrapolated
results are presented in figure A2: these differences serve as an estimate for the
discretization error.

(FIGURE A2 ABOUT HERE)

To further validate the above estimate of the discretization error. w e applied the
:mimerical algorithm toa nroblem having a known solution. The nonlinear function Q in
equation ( 16) is chosen to be:

(D2
£,2(c1.r:A' = .\cI +

r J oa r)



'Nhere ,- is a Bessei function of order i an a is its first zero (a =;.8317..... Eiquation
l 16) with this K2 has an analytic soiution which is quaiitativeiv similar to the computed (and

weakly nonlineari solitary waves:

Ctr.z=.-a'-,M)rJ(ar)sech--L z Na-'.\

This soiution bifurcates from the trivial D-4) branch at A=a Z and increases in magnitude as
.\-40. (This problem does not necessarily correspond to a physical primary flow.) The

discretization errors for (, p4)0, l) 1 and the first two axial wavenumbers are presented in

fi2ure A3.

(FIGURE A3 ABOUT HERE)

The error in the perturbation strearmfunction with the 20x20 grid is close to 2% for
the test function and less than 1% for the Richardson-extrapolated case. For veiocities
(computed from the strearmfunction by central differences), the discretization error is larger.
but still not exceeding a few percent on a 20,.-20 grid. The results in figure A2(b) are for the
axial velocity w=,ij/rar. which is strongly dependent on r-resolution. The errors in the

values of the axial wavenumbers f_ and the bifurcation points 4-m are similarly of order
1% for the same level of resolution. The 20x20 grid was therefore the standard ;n most of
our computations. 4, s,

A.4 The Singularity at r=O '41
Equation ( 16) has a singularity on the axis r-0. and construction of a num,'idiea

scheme as well as interpretation of the results should take that singularity into account. The
discretization (A2) makes explicit use of the boundary condition (16c) at r=0. and applies
A1) only to interior gnd points: the singularity is thus avoided. However. if the grid is

:-efined until - becomes very iarae at the first arid point off the axis. then the matrices
r

involved will become unbalanced and numerical accuracy will deteriorate. I. our case such
fine Lrids are not necessary since Richarisons extrapolation seems to show convergence
before very large numbers occur.

The singularity is encountered again when we compute the axial velocity at the axis,
which is used as a measure of the perturbation size. The definition: w=r 10at/ar cannot be
applied directly at r=): two numerical schemes are used. and the values obtained for wfl.0)
aree to within a few percent.

The first method is a quadratic extrapolation of w values from interior grid points.
oupled with the condition: dw/br--) at r=(). The quadratic function satisfying this condition

and passing througii the first two interior -rid points is:

S=dn- [ (__( r 2

!cading to:
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- -:wcArl -,. 2 r'2 0) r

The second method appiies Stokes' theorem to a rectangular loop of dimensions 6r.
Oz) touching the axis r=() and centered about the line or symmetry z--O. To reduce the error
associated with numerical intearation over a finite rectangle, we let 6z---,4) and obtain a
balance involving r-intezration only. The vorcity intearai can be expanded in powers or
oz. r being the azimuthal component of the vorticitv:

8r 6Oi2

ds = . f[l(r,0)+z-l.(rO)+.., dz dr
() 42 (IL

6r

6z Q q(r,0) dr + 0(6z2)

A simiiar expansion is done for the circulaton inteerals:

u.dI J[w(O.z)-w(6r.zJi dz

+ u(r,6z/2-u(r,-6z/2)l dr

z v (0 ,0 ) - w Sr , , , r , 0) d r .;+ (6 z

Comparng the leading terms in 6z. we obtain:

6r

(),()) = wi6r,0) + (.) + ----- r.0) dr

The integrai was computed using the Simpson -rule. and the two expressions for

%v0.0) were compared for 6r=-Ar and 2Ar. The differences were of order ic in most
vases. and increased up to 5c oniy as A--u (w ,here the perturbation is small and roundoff
error becomes sienificant) and as A-) (where larae radial uradients require increased
resolution). We therefore used the simnier quadratic extrapolation form throuLhout. This
c.ompaison also serves as an additional check on the convergence of the numerical resuits
near the sinuuiar iine r=(.
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Fi4ure Captions

Figure 1. Bifurcation diagram ror the first two coiumnar branches.The extreme
perturbation axial velocity occurs away from the axis on part of the second
branch.

Figure 2. Velocities on the second columnar branch. for different vaues of the swv ri

parameter A. (a) axial velocity b) azimuthal velocity.

Figure 3. Velocities on the supercritical side of the principal columnar branch. (a)
axial velocity (b) azimuthal velocity.

Figure 4. Velocities on the subcritical side of the principal columnar branch. (a) axial
velocitv ib) azimuthal velocitv.

Figure S. Exchange of criticality between the primary flow (.--.0--, and the princinai
conjugate branch (- ,. using Benjamins Froude number criterion.

Figure 6. Comparison of computed (o ) and asymptotic (-) solutions in the limit

A--+) on the principal branch. (a) location of the boundary laver (b) maximum
of the streamfunction ,* (c) layer thickness 6.

Figure 7. Comparison of computed and asymptotic velocity profiles for the principal
branch, at A=0.00l14f)o.

Figure 8. Bifurcation diagram for the periodic branches of umi and uo2 : c4=2 for

,etter separation of the bifurcation points. - rrincipai columnar branch
- L=I( wave centered at z=L/2: . L=l() wave centered at z=:

1- L=5 wave centered at z=L/2: - L=5 wave centered at z=O.

Figure 9. Approach of the periodic solutions to localized waves. (a) fixed length L=t:
wave trough becomes localized as the wave amplitude increases. tb) fixed
amplitude A/4t=l. 10: the half-height-length of the wave approaches a constant
value independent of the computational domain length.

Figure 10. Nleridional streamiines of periodic solutions: L=,. c4=14. contour

inteirvais of ).1 -a) .\-A ,= 1.5 . just before the appearance ot stagnation

points. b (A-btu/a= .(5. a recirculation hubble appears. ,hc A., =..
,ecirculation region Lro"\ with the perturbation amplitude. d) detaii of tihc
",ubble in (c).



Figure 11. Velociues on ine pcriodic nrancn or uiq It Ine wave center z=u. (a) axial
velocity (h) azimuthal ,eiocitv (c difference in axiai velocity between the wave
center and tail.

Figure 12. Solitarv wave behaviour of the periodic solutions: the dependence ot
effective wave iensth (half-height ien xhl on the wave amplitude, compared to
the -0.5 slope for an exact solitary wave. o L=6: * L=20: + L= 100. (a)
wave ampiitude measured by extreme axial velocity (b) wave ampitude
measured by the distance from the bifurcanon point.

Figure 13. Convergence of the wave crests of the periodic solution to the columnar
solution of the same amplitude. (a) fixed length L=6, the difference vanishes as
the wave amplitude increases. (b) fixed amplitude (A-40 t)/pl=O.05, as the
computational domain length increases.

Figure 14. Bifurcation diagram. solitary wave branch. The extreme perturoation axial
velocity is off the axis when A<0. 16uk )

Figure 15. Axial velocity at wave center z--) on the solitary wave branch

Figure 16. Meridionai streamlines of solitary wave solutions, L=5, contour intervals
0.05. (a) V4()( =0.80 tb A/p, =0.70, a small recirculation bubble appears
(c) A/4(x) =0.001, a large recirculation bubble. (d) detail of the bubble in (b),
(e) detail of the bubble n (c).

Figure 17. Comparison of solitary wave amplitude of the computed (o ) and weakly-
nonlinear (- solutions. (a) bifurcation diaaram (h) detail showina the
bifurcation and the ampiitudes of flow reversal. (c) half-heiuht-leneth vs.
amplitude of the computed wave. compared to the -0.5 slope of the exact
solitary wave.

Figure 18. Comparison of perturbation streamlines of the computed (- vs. the

weaklv-nonlinear ( .............. ) solitary waves. (a) A/44x)=t.90, contour intervals
0.004 ih) A/U.yz)=t).50. contour intervals 0.012 (c) \/4o()=0.20. contour
intervals 0.02

Figure Al. Structure or the matrices a) D' (h) D"

Figure A2. Variation with mesh size of errors relative to Richardson-extrapolated
values at .\i==).X0: * actual computation with this mesh: o extrapolated.

(a) error in (O0.3.0) (hi error in w 0.0) rc) error in Lt(w .



Figure A3. Variation with mesh size or errors reiative to ne exact soiution or the test

problem: * actuai computation with this mesh: o extrapoiatedI. .,,)maximum

error in (I)(r.zi at A/a -=0.80 (h) error in axiai wavenumoers (,.) error in u.,,

(d) error in 4n-fl
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A method for computing leading eigenvalues (having the largest real part) and their
eigenvectors for large generalized eigenvalue problems is presented. A linear fractional
transformation is used to map a group of leading eigenvalues into dominant eigenvalues
(having the largest modulus). The Dominant eigenvalues of the transformed problem are
computed by Stewart's (1976) Simultaneous Iteration. Each iteration involves matrix-
vector multiplication and the solution of a linear system, which can be done efficiently if the
matrices involved are sparse or have some special structure. Convergence properties are
similar to those of the inverse power iteration: the method requires an estimate for the
region in the complex plane containing the desired eigenvalues, and converges rapidly
when a good estimate is available. The amount of work is also comparable to that of the
basic inverse iteration, which is significantly less than that required for full eigensolution.
Examples from hydrodynamic stability demonstrate convergence rates, computation time
and the ability to resolve simultaneously groups of leading eigenvalues.



Computation of Leading Eigenspaces for
Generalized Eigenvalue Problems

1. Introduction

A generalized eigenvalue problem has the form:

Ax=B x (1.1)

where A, B e nxn are general complex matrices. In many applications these matrices will
have some useful structure, such as symmetry or sparsity.

Let the Leading Eigenvalues of (1.1) be those having the largest real parr ; the more

common term. Dominant Eigenvalues, refers to those having the largest modulus. In
some applications, only a few leading eigenvalues of (1.1) are sought; for example, in
hydrodynamic stability problems, the real part of a is the growth rate, and the eigenvectors

of the leading eigenvalues represent the most unstable modes.

Traditional methods for solving (1. 1) usually involve finding all the eigenvalues, using
the Q-Z algorithm (see IMSL or other numerical analysis libraries) and then sorting by the
real part. This involves 0(n 3) work, where n is the order of the matrices, and becomes

expensive or impractical for large n; little or no advantage can be taken of sparsity or other

structure of A and B.

Several methods exist for extracting selected eigenvalues and eigenvectors of standard
eigenvalue problems, i.e. when B is invertible (see, for example, Golub and Van Loan,

1983.) Power and Lanczos methods compute the dominant eigenvalues: inverse iteration
can find the eigenvalues closest to a given point in the complex plane and their

eigenvectors. These are not directly applicable to the problem of computing the leading

eigenvalues.

Recently, an integration method was proposed (Goldhirsch et al. 1987) for the leading
eigenvalues of a standard eigenvalue problem (where B is invertible.) This method is

simple and elegant: however, its convergence may become very slow (or, alternatively, the
size of the reduced problem may become too large) if the separation of the eigenvalues is

small. Another problem may arise if the problem is defective, i.e. a leading eigenvalue has

generalized eigenvectors, in this case, the integration method may return inconclusive or
inconsistent results.



2. The Dominance Mapping Method
This method attempts to address the problems (1.1) which are not solved efficiently by

the other methods mentioned above. It will work for singular A and B; for defective

problems; it will take full advantage of the structure of the matrices; and it allows some

control over convergence rates. There are a few restrictions, however, which will be

discussed below.

The eigenvalues in the complex av-plane can be mapped to a X-plane by the linear

fractional transformation:

a + -1 (2.1)

x+I

where c is a real positive, and 3 a complex, constant. The important effect of this linear

fractional mapping is to map the half-plane to the left of a=13 to the inside of the unit circle

in the k plane, as seen in fig. 1. If m leading eigenvalues are required, and we select 13
such that:

f" > Re(13) i=l...mRe(ai)
[< Re(13) i=m +1...n

then the corresponding m eigenvalues will be dominant in the X plane:

> 1 i=1...m
liil < I i=m +1...n

Figure 1: The Dominance Mapping (2.1)

The eigenvalue problem for X is in standard form:

Cu =C 1- C2 u= ,u (2.2)
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where:

C1 =- [A-(oa +P) B]

C2 = [A+(c -3) B]

The problem of computing the leading eigenvalues of (1.1) becomes that of computing
the dominant eigenvalues of (2.2); the methods mentioned in § 1 can now be applied. We

used Stewart's (1976) version of Simultaneous Iteration, which applies to the most
general, non-hermitian C.

A transformation similar to (2.1) was proposed by Jennings (1977), in the context of

converting a quadratic eigenvalue problem to standard form. Jennings (and no one else, to
the best of the author's knowledge) has not made the second step of applying a dominant

eigenvalue method to a transformed problem equivalent to (2.2).
The mapping constants cx and 3 allow the user some control over the rate of

convergence and the order in which the leading eigenvalues emerge during the iteration.
The user must have an estimate of where in the complex plane the leading eigenvalues

reside; 3 is set to the left of this region. The point c = 3+ct is a singular point of (2.1)

which maps to infinity in the X plane; eigenvalues close to c will map to very large

modulus in the X, plane, and will converge rapidly during the iteration of (2.2). a should be

set, therefore, so that c is near the center of the leading region or near the most important

eigenvalue.

The following algorithm computes m leading eigenvalues and eigenvectors of (1.1),

using the Dominance Mapping:

1. estimate leading region; select a,3

2. perform L-U decomposition of C1 =- [A-(cx +P) B];

(use the structure of A and B )

3. select m initial column vectors u(0) C Dnxm

4. Simultaneous Iteration on C u = . u :

for each multiplication u (k+ ' ) = C u(k ) do:

4.1 multiply: v = C2 u
(k )

4.2 solve the system: C1 u(k+1) = v

5. map converged ?,i -- ai .

3. Singularities in the Dominance Mapping
The algorithm of §2 may fail in two cases, corresponding to the two singularities of the

mapping (2.1): the point G=c , which maps to infinity in X, and X =-I which maps to

infinity in a.
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When Ic -aiI < E for some i _.m, for a small (machine-dependent) E, then the matrix C

will be ill-conditioned or numerically singular. This is easily remedied by a small change in

a, which does not significantly affect any other properties of the mapping.

When Ilm((i - c) >> 1 for some i rn, the corresponding X-eigenvalue is close to the

singular point X=-1. This implies that its separation from the subdominant eigenvalues

inside the unit circle is small, often so small that convergence is impractical. Some
improvement may result if we increase ax; but this may decrease the rmod-Ous of other

dominant X-eigenvalues and slow down their convergence. In a case where leading

eigenvalues are widely separated in the imaginary direction, it may be necessary therefore
to restart the iteration with different 3 values to resolve separate clusters of leading

eigenvalues.

4. Example:

The performance of the DM method can be demonstrated by observing the amount of
work needed to resolve a fixed subset of leading eigenvalues, as the order of the problem

increases. The following example includes tridiagonal matrices of increasing size N, all

having two leading eigenvalues:

(7 = 1.2 (4.1)

(2 = 1.1

Re(,yi) <_ I for i= 2...n.

Selecting a = 0.3, J3 = 1.0 isolates (I, G2 . The problem was solved first using the

traditional QZ routines (IMSL), then using the DM method but treating the matrices as

dense, and finally taking full advantage of the structure. The results are shown in Figure 2.

The savings in computing time relative to the full eigensolution can be sisinificant: at

n = 100, only -of the work is necessary even without exploiting the band structure; the

work is reduced by more than an order of magnitude when the structure is used.
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1000 -

time 2.7

100

1.3 0 QR

10 o DM, dense

a DM, banded

0

1 a

10 100 1000

Figure 2: Comparison of work to resolve 2 leading eigenvalues of (4.1)

5. Application to the Orr-Sommerfeld Equation

The Orr-Sormmerfeld equation:

(D2- U2 ) ,y = icxR [(U-c)(D 2-a2)J - UxV ] (5.1)

describes the hydrodynamic stability of parallel shear flow (see, for example, Drazin and

Reid 1981.) High accuracy eigenvalues were computed by Orszag (1971) for plane

Poiseuille flow with R=10000 (Reynolds number) and cx=l (streamwise wavenumber.)

The location of the twelve least stable eigenvalues are shown in figure 3.

Equation (5.1) is discretized using central differences (a spectral method may be more

appropriate in this specific case, as in Orszag (1971), but the banded finite-difference

matrix is a good example of candidate problems for the DM method.) The eigenvalue c is
replaced by (7=-ic , to conform with the definitions of (1.1).

When Im([3)=mWG), eigenvalues 1 and 4 were the first to converge: 2, 3, 5 and 6 took

longer converge, since the imaginary part separation brought their %. counterparts close to

the singular point ,.=- 1. For Im([3)=Im(a2), the order was reversed: first eigenvalues 2. 3,

5 and 6 and then 1 and 4. In both cases, the first group converged within 10 to 15
iterations, regardless of the number of g-rid points.

The error associated with convergence of the k-iteration was not significant in our

computations. Using a stopping criterion of IlCu-kull : 10- 3, the leading cy-eigenvalues

were converged to at least 5 digits. The discretization error of the finite-differencing
(compared to Orszag's results) is proportional to Ax2 , as expected. The time to resolve the
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most unstable eigenvalue and its discretization error vs. the grid resolution are plotted in

figure 4.

11. c

12 +

9.107, 8 "-.4 , ic

Figure 3: Poiseuille flow eigenvalues. R=10000, cx=l.0

time Relative Error
in (31

100 .01

.001
10

.0001 slope =2.0

100 n 1000 .001 .01 Ax

(a) (b)

Figure 4: (a) the time to compute the most unstable eigenvalue of (5.1)
(b) discretization error vs. the grid interval A.x
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6. Conclusion
Using the Dominance Mapping and a Power Iteration method we can compute leading

eigenvalues and eigenvectors of large generalized eigenvalue problems. This method can be
more efficient than a full eigensolution even for a general pair of matrices, but is especially
attractive when the matrices have a structure that can save work in the Gaussian elimination
and matrix multiplication steps. The DM method can be applied to singular and defective
problems that may cause failure or slow convergence in other methods.

Use of the DM method is restricted, however, to cases where an estimate for the
leading eigenvalues is available. When this estimate shows a wide distribution of leading
eigenvalues along the imaginary direction, several passes may be necessary with different
mapping parameters to properly resolve all leading eigenvalues, as demonstrated for the

Orr-Sommerfeld problem.
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